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Abstract. Applying the finite-size scaling in conformal field theory. we evaluate the cornlation 
functions and susceptibilities of a LD Hubbard mdcl  with l/sinh(ur) happing and repulsive 
interaction in an extemd magnetic field. The enor introduced in our approximation scheme 
should be exponentially small in the thermodynamic limit. Incidentally, we provide the 
generalization of previous work on nitiul exponents to the case where ¶he right and left Fermi 
velocities do not coincide. 

'Very recently [ l ]  we introduced a one-dimensional I/sinh(Kr) Hubbard model that 
interpolates between the standard [2] and the I / r  Hubbard [3] models. Assuming 
integrability and applying the asymptotic Bethe amatz to this model, we showed [I J that 
the Bethe ansatz equations yield consistent results for the ground state energy and excitation 
spectrum in all known solvable limits [4, 51. At half filling, backscattering is relevant for 
arbitrary positive U and our model exhibits a Mott transition at U& > 0) = O+. While 
its K + 0 limit is singular, it maps onto the l / r  Hubbard model which is known to have a 
U& = 0) = 2x [3]. 

In the present work, we evaluate the asymptotic behaviour of correlation functions for 
the l/sinh(Kr) Hubbard model by the finite-size scaling in conformal field theory 16, 71. 
The model we want to understand resides on an infinite chain while the model we really 
study has a finite length L and periodic boundary conditions. The rigorous justification of 
our approach is a delicate issue which we shall not discuss here [SI. We believe that the 
corrections to the long-distance (1x1 >> K - I )  long-time behaviour of correlation functions 
resulting from these approximations are exponentially small in the thermodynamic limit. 

Simple yet powerful, bosonization techniques have been a very popular approach to 
correlation functions in the last decade. Nevertheless, there are real limitations to the 
bosonization approach. For instance, in the presence of an external magnetic field, the low- 
energy effective theory cannot be described by n independent Hamiltonians (one for each 
critical degree of freedom). It is known from previous work (see [7,9]) that in the presence 
of a magnetic field the spectrum of scaling dimensions of conformal operators in a model 
with n internal degrees of freedom is not determined by a single renormalized parameter but 
rather by the so-called (n x n )  'dressed charge matrix', essentially the Scattering matrix for 
density fluctuations at the Fermi surface. Below. we report on a generalization of the results 
of [6, 7, 91 to the case where the Fermi points are asymmetric and the Fermi velocities do 
not coincide. Many formulas we derive for the l/sinh(Kr) Hubbard model a x  natural 
generalizations of those of [7]. 

0953-8984/95/112285t07$19.50 0 1995 IOP Publishing Ltd 2285 
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Consider a Hubbard model for N spin-f electrons on a chain of L sites with hopping 
amplitude t(1 -m). on-site repulsion U, chemical potential p and magnetic field h = 2 p ~ H  
( p ~  is the Bohr magneton), 

where t ( l  -m) = -i~inh(x)(-l) '-~/sinh[~(1-m)] and K - ~  controls the effective hopping 
range. The model whose critical behaviour we want to investigate is given by (1) with L -P 

W. It has the odd-parity dispersion curve e(k) = -sinh(K)(a/az) log@j(z, e-K)lL=k,z. 
where 03(z,q) denotes a Jacobi theta function [IO]. In [l], we have employed the 
asymptotic Bethe ansatz and have proposed to evaluate the spectrum of excitations of 
the model (1) by solving the Lieb-Wu-like Bethe ansatz equations. 

For the sake of generality, it is convenient to rewrite the Bethe amatz equations in the 
compact form [9] 

N" 

where p:(AY) denotes the bare momentum given by p:(uj) = H - ' ( u j )  for a = c and 
p ; ( A i )  = 0 for a = s, while p&;) = 27rI,U/L is the dressed momentum. The quantum 
numbers I?, CY = c.s  (I: < I: < I;) are integers or half-odd integers according to: 
I; = NJ2mod 1 and I; = (Nc - Ns + I)/2mod I ,  where N, denotes the number of 
pseudoparticles of type (Y = c, s. H - ' ( u )  is the inverse of U = H(k) with the convention 
that pt(u,7) e p:(uT) if I,?- < I,?+. It can be obtained from the two-body scattering 
problem as 

H ( k )  = [ - r ~ ( k )  + e(k)[E(k) - U]/Zsinh(~)] / 2  ( 3 4  
where 

@:(AT -A!) denotes the bare scattering matrix: & ( x )  = 0. & ( x )  = &(x)  = -0(2x) and 
& ( x )  = Nx), with S ( x )  = -2tan-' ( 2 x / U ) .  In this notation, the energy and momentum 
are given, respectively, by 

where €:(U) = p - h/2 + E ( H - ' ( u ) )  and €:(A) = h. 

convenient to introduce the scattering matrix for the density fluctuations 
In order to calculate the finite-size corrections to the energy and momentum, it is 

where Kap(x) = (a/ax)@$(x), and 4: denote the right (left) Fermi momenta of the a-type 
pseudoparticle, i.e., q; c A; < 4,'. For a given magnetic field and chemical potential, q$ 



~~ ~~~. 
ID model with Usinh hopping 2287 

are determined from the conditions that 6,(q:Iq*) = 0, where the dressed energies obey 
the integral equations (compare with [6, 7, 91) 

We further define the 'dressed charge matrices' 

Following [6 ,7 ] ,  we take the large-l limit in the expressions for the energy and momentum 
while keeping the terms that scale as L-I. Away from half filling, we find for the ground 
state energy, the excitation spectrum and the momentum, respectively, 

1 E ( A N , A D ) - E ~  =~-  - A N ~ [ v ; ~ - v ~ ~ ] A N + - A D ~ [ v ~ -  V ; , ] A D  
L 8  2 

1 2 i r [ '  1 +- ADT [ v:~ + viJ] AN +  AN^ [v;, + v;, J AD 4 4 

1 C(N$-N,-) 
m=cs 

1 + [K& + K F ; ~ ]  ANa + [K&. - K&] ADe + O(l-*) (W 
u=t.s m=c.s . , 

where U," denote the right (left) Fermi velocities at the respective Fermi points and 
V* = diag(u2, U:) .is the bare velocity matrix. ea = f[Z; + Z!] counts the number 
of CY pseudoparticles in excess on the right Fermi point with respect to the left Fermi point. 
In the lowest-energy state D: # 0 (q; # 4:) because of the asymmetly of the dispersion 
curve. The vectors AN = N - N o ,  A D  = D - Do and N,' (particle-hole) characterize 
the excited states. We use the notation K& = (Zn/L)!I;.' and 2kF, = K& - K& with 
kFa = n N a  f 2 L .  for CY = c. s. The spectral velocity matrices !& with A, B = J ,  N 
generalize Haldane's velocities U N . J  [ I  I] to the case with internal degrees of freedom and 
where the Fermi points are asymmetric: V& = [(Z~)-']TV*(Z$)-l. 

The finite-size corrections to the ground state energy ( 8 4  tell us that the low-energy 
effective theory consists of the semidirect product of two Virasoro algebras with central 
charge c = 1. This implies that the low-temperature specific heat is linear in 7 (121, i.e., 

Alternatively, the free energy can be evaluated following the ideas of Yang and Yang [13] 
which also leads to equation (9). 

Furthermore, we can calculate the spectrum of conformal dimensions by a simple 
generalization of the results of [9]. In the present model, the correlation functions for 
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the primary fields are given by (in Euclidean space) 

P-A Bares and F Gebkrd  

@A* (x ,  t)&A+(O, 0)) 
exp (i[ANcK;F + ANsKfY]) exp (-2i[AD,k~? + (ADC + AD,)kF&]) . , ,, . , , - - 

( x  - iu$r)zArG + iu;t)*A;(x - iu:t)ZA:(x + iu:r)ZA; 
(10) 

where A$$ denote the scaling dimensions of the primary fields, kFc = kFt + kF1, kFs = kF1 
with kFo = (n/2)(NO/L), for U =t, 4, and K;: = ( K &  + K F , ) / ~  is the centre of mass 
momentum of the Fermi sea of (Y pseudoparticles. The correlation functions for the physical 
operators are linear combinations of the above expression. As in the symmetric case, the 
low-temperature exponential decay of correlation functions can be obtained by a conformal 
mapping of the entire complex plane onto a strip of width 1 / T  [14]. The conformal 
dimensions and spins are calculated by comparing the expressions for the energy and 
momentum finitesize corrections that follow from the general principles of conformal field 
theory and those in (8b) and (8c). Since the results are similar to those of [7], we shall omit 
the explicit expressions (see [SI) and discuss for brevity the exponents in zero magnetic field. 
As in the standard Hubbard model, the scaling spins are independent of the coupling constant 
for h = 0. The single-particle propagator has kF. 3 k ~ ,  . . . oscillations with respective 
exponents: 2A: = rP*/32+1/(28")i$, 2A: = $&$ and 2Af = 9/328*+ 1/(28*)&$ 
2Af = $ i a. where 8* = 2((*)' and f* = t(4q:/U) = 2;. It can be shown that ((z) 
obeys the integral equation 

((z) = 1 + l,: dz'K"(z - z')t(z') 

where 20" = 4q:/U and the kernel K"(z) is given by 

For 1q,"I << U ,  a simple calculation leads to f* z 1+(2(q:-q;))/(aU) while for 1q,"[ > 
U ,  the Wiener-Hopf method yields <* ir. [I - U/(Bx(q: - q;) ) ] .  The momentum 
distribution shows a weak singularity at kF, i.e., ( n p )  c( constant - sgn(k - kF)lk - kFl" 
with v = [8+ + 8-1/32 + [I/$+ + 1/8-1]/2. The density-density'correlation function 
shows 2 k ~ ,  4 k ~ ,  . . . singularities like Ik - U(FI~', Ik - 4 k ~ p  with y~ = [e+ + 8-1 /8 
and yz = [ e +  + 8- - 2]/2. The spin-spin correlation function has a 2k.n singularity with 
the same exponent as the 2 k ~  charge-charge correlation function. The singlet and triplet 
superconducting correlation functions behave at long wavelengths, i.e., Ikl << K ,  as Jklp, 
where ,3 = 2 [I /++ + I/@-]. The general expressions for the scaling dimensions in the 
presence of a magnetic field have to be studied numerically. 

The macroscopic properties of the system can be expressed in terms of the microscopic 
parameters of the model, i.e., critical exponents, as was first done in the scalar case by 
Haldane [ l l ] ,  and later generalized to the multicomponent_case by Frahm and Korepin 
[7]. = (a*E)/(aN,aNp) (whose entries 
are not equivalent but related to the compressibility and magnetic susceptibility). where 
E" = E - /A + LMh denotes the internal energy of the system. Setting ADa = 0 for 
CY = c. s in (86) and comparing with the expansion of the free energy to second order in the 
change in the number of particles and magnetization, we have x-' = (a/4) [VJN - V i N ] .  
On substitution of VNN and on account of the definition of the compressibility at fixed 

Wc define a susceptibility matrix by 
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magnetization and of the magnetic susceptibility at fixed density, we arrive at 

rc 
x - l /  = -  ~c 14 ( z ; J  0 3 b )  

where n = N / L  denotes the density of particles, M the magnetization and kB = 1. 
Specializing to zero magnetic field, we find 

" 8 a=t.rr=s.s 

where = Z:$$, From~ elementary thermodynamics we know that K - I I H  = 
((aM/aH)l,/(aM/aH)i,) K - ] ~ M .  It is then readily shown that 

In zero magnetic field we obtain the simple formulae 

XI ( H = O ) = - [ - - _ ]  1 1  1 

P x U: U, 

which have an obvious interpretation in terms of (left-right) average and weighted Fermi 
surface density of states of the pseudoparticles. 

Following Shastry and Sutherland 1151, we evaluate the response of the system to 
twisting the boundary conditions for charge and spin degrees of freedom. The energy 
increment due to infinitesimally small twisting angles @c,s (& = q5+ and @s = q5b - @?) 

in the (Y (ground or excited) state is Ea($,. @$) - E(0,O) = (n/L)ABZ [V: - V;] ABa, 
where - for short we rewrite-V/: = VA. For the charge (K;  - K<) process, we have 
ADc = 1 + $J(Zx).  A F s  = @J(Zrc).  while for a spin, (K& - K & )  process, we 
need ABc = $c/(Zrc)3 ADs = 1 + &/(Zrc) .  By definition the charge (spin) y = c 
( y  = s) current is given by JZ = -C,=, , lA,Y(aEa)/(a$~)l i l~, ,  with A;,$ = -le1 

and A; = - A i  = 1. Using the above results, the charge currents associated with the 
(KA -K;) charge (spin) pseudoparticle processes follow as J,' = ( I  / L )  [VAC, - VEC (J,' = 

VAS - V i s ] )  while for the spin currents, J ,  = [V:- - Vym - Z(V;, - VY-) 3 / (2L)  
VAS - VL8 - 2(V& - V;,,)] / ( 2 L ) ) .  

The Drude peak in the charge (spin) DC conductivity depends on the charge (spin) 
stiffness Reuc(o) = 2ire2D,6(w) (Reo&) = (rc/Z)Ds8(o)). The charge and spin 
stiffnesses are evaluated from the increment in the ground state energy due to twisting the 
boundary conditions, D, = [VAC - VGc] /(4n), D, = D, + [ V:= - VTs + VAS - VGs] /rc 
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which in zero magnetic field reduce to the simple expressions 

P-A Bares and F Gebhard 

1 

n D, = D, + - [U: - U;]. (17b) 

Near half filling, the charge stiffness is substantially suppressed, i.e., the charge-carrying 
mass is strongly enhanced. a fact that signals the onset of the insulating state. 

As mentioned in the introduction. the half-filled band (H- ' (q: )  = h) has a gap in the 
charge spectrum while the spin spectrum is massless, i.e., can be described by Gaussian field 
theory with central charge c = I .  The critical behaviour in the spin sector is controlled by 
the scalars 22. The conformal dimensions are given by A* = 1 [AD& zk ANs/22$. 
Due to the 2 z  periodicity of H(k),  the formulas simplify considerably [SI. For h = 0 
(q: = CO), closed expressions can be obtained for all physical quantities [ I ,  81. At weak 
magnetic fields, the Wiener Hopf method yields 

with qs = (U/Za) log ( h o l h )  and 

where H'(k) denotes the first derivative of H(k) .  The critical field h, to the ferromagnetic 
state is (qs5 = 0) 

while below h,, a Taylor expansion leads to 

with 

Note that in both cases and to lowest order in (q: - q;)-', the integration bounds are 
symmetric, i.e. q,+ = -4;. 

Many of the results presented in this paper appear to be generalizations of those of 
[71, yet some are not so obvious. Moreover, the asymmetry of the charge spectrum in 
the general case makes an analytic approach difficult and substantial numerical work is 
required. An asymptotic expansion at large K around K = M (Hubbard model) leads to 
corrections of U(e-Y) to the energies. Thus the physical properties of our model map 
smoothly onto those of the Hubbard model in the K -+ w limit while the limit K 4 0 
is very singular. It is remarkable that the application of the asymptotic Bethe unsurz [16] 
reproduces all known results in vario-us limits. Our investigations of the few-body scattering 
problem indicate that the N-particle wave function of the l/sinh(Kr) Hubbard model has 
a complicated (compared to Bethe ansatz) structure and presumably obeys a recurrence 
relation that involves the (N - 1)- and (N - 2)-body wave functions. This complexity of 
the eigenfunctions survives in the K + 0 limit where we know [3] that a Mott transition 
takes place at U, > 0 for a half-filled band. 
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